Skip to main content

Prototype Prescribing Outlier Dashboard for Camrose Gillies And Hackwood Partnership

At OpenPrescribing we are piloting a number of data-driven approaches to identify unusual prescribing and collect feedback on this prescribing to inform development of new tools to support prescribers and organisations to audit and review prescribing. These pilot results are provided for the interest of advanced users, although we don't know how relevant they are in practice. There is substantial variation in prescribing behaviours, across various different areas of medicine. Some variation can be explained by demographic changes, or local policies or guidelines, but much of the remaining variation is less easy to explain.

The DataLab is keen to hear your feedback on the results. You can do this by completing the following survey or emailing us at [email protected]. Please DO NOT INCLUDE IDENTIFIABLE PATIENT information in your feedback. All feedback is helpful, you can send short or detailed feedback.

This report has been developed to automatically identify prescribing patterns at a chemical level which are furthest away from “typical prescribing” and can be classified as an “outlier”. We calculate the number of prescriptions for each chemical in the BNF coding system, the count of all prescriptions within that chemical's BNF subparagraph, for prescriptions dispensed between June 2021 and December 2021. We then calculate the ratio of these counts along with the mean and standard deviation of those ratios across all Practices. From this we can calculate the “z-score”, which is a measure of how many standard deviations a given Practice is from the population mean. We then rank your “z-scores” to find the top 10 results where prescribing is an outlier for prescribing higher than its peers and those where it is an outlier for prescribing lower than its peers.

For each outlier chemical, a kernel density estimation plot of all Practice's chemical:subparagraph ratios is provided, with this Practice's ratio overlaid in red.

It is important to remember that this information was generated automatically and it is therefore likely that some of the behaviour is warranted. This report seeks only to collect information about where this variation may be warranted and where it might not, to inform research on this topic. Our full analytical method code is openly available on GitHub here.

This is a new, experimental feature. We'd love to .

Prescribing where Camrose Gillies And Hackwood Partnership is higher than most

BNF Chemical Chemical Items BNF Subparagraph Subparagraph Items Ratio Mean std Z_Score Plots
Mometasone furoate/olopatadine hydrochloride 3 Drugs used in nasal allergy 3,213 0.00 0.00 0.00 26.30
Nicotine bitartrate 8 Nicotine dependence 52 0.15 0.00 0.03 5.33
Nalmefene 16 Alcohol dependence 38 0.42 0.01 0.08 4.91
Voriconazole 4 Triazole antifungals 148 0.03 0.00 0.01 4.66
Rifampicin combined preparations 6 Antituberculosis drugs 14 0.43 0.02 0.12 3.33
Phenylbutazone 1 Non-steroidal anti-inflammatory drugs 4,539 0.00 0.00 0.00 2.97
Testosterone undecanoate 152 Male sex hormones and antagonists 1,383 0.11 0.03 0.03 2.57
Magnesium hydroxide 12 Antacids and simeticone 29 0.41 0.03 0.15 2.49
Testosterone 298 Male sex hormones and antagonists 1,383 0.22 0.07 0.06 2.39
Oxycodone hydrochloride/naloxone hydrochloride 90 Opioid analgesics 6,929 0.01 0.00 0.00 2.38

Prescribing where Camrose Gillies And Hackwood Partnership is lower than most

BNF Chemical Chemical Items BNF Subparagraph Subparagraph Items Ratio Mean std Z_Score Plots
Finasteride 830 Male sex hormones and antagonists 1,383 0.60 0.82 0.11 -1.92
Rifampicin 0 Antituberculosis drugs 14 0.00 0.74 0.40 -1.88
    Vitamin E 0 Vitamin E 11 0.00 0.72 0.41 -1.76
      Somatropin 4 Hypothalamic & anterior pituitary hormone & antioestrogens 9 0.44 0.90 0.28 -1.64
      Spironolactone 560 Potassium-sparing diuretics and aldosterone antagonists 1,100 0.51 0.72 0.14 -1.52
      Letrozole 85 Breast cancer 633 0.13 0.45 0.22 -1.45
      Isosorbide mononitrate 534 Nitrates 943 0.57 0.72 0.11 -1.44
      Medroxyprogesterone acetate 223 Parenteral progestogen-only contraceptives 332 0.67 0.88 0.15 -1.38
      Lansoprazole 5,862 Proton pump inhibitors 24,696 0.24 0.44 0.16 -1.29
      Ferrous sulfate 240 Oral iron 2,844 0.08 0.37 0.22 -1.25